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Abstract

The parameterization of turbulence and convection at the sub-grid scale remains a major cause
of the inter-model spread in climate predictions. The Eddy-Diffusivity/Mass-Flux (EDMF) parame-
terization unifies these two physical regimes by decomposing the grid box of a global climate model
into two area fractions: one containing coherent updrafts and another containing the turbulent
environment. To reduce computational cost, the EDMF parameterization currently neglects the
variance of updraft activity and instead represents the updrafts solely by their mean values. In this
project we investigate whether by including multiple updrafts in the EDMF scheme (rather than a
single bulk plume, as currently used) it is possible to account for the variance of updraft activity,
diagnosed from Large Eddy Simulations (LES).

To this end, we used kernel density estimation (KDE) – with N Gaussian kernels representing
the multiple updrafts - to approximate the probability density function of updraft activity generated
from LES for various convective regimes and domain sizes. The bandwidth of the Gaussian kernels
is set the maximum bandwidth which satisfies the EDMF assumption on the Reynolds-averaged
sub-grid scale variance of updraft activity. We found that for all cases tested there exists an optimal
number of updrafts which minimizes the Kolmogorov-Smirnov error between the two distributions,
and that this optimal number varies strongly with domain size, while also being correlated with
the maximum variance of updraft activity.
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1 Background and Motivation
Despite significant progress being made over previous decades of work, climate projections are still

marred by large uncertainties, particularly in the Equilibrium Climate Sensitivity (ECS), a measure of
the global equilibrium temperature response to a doubling of CO2 (Schneider et al., 2017).

One of the key causes for this spread emanates from the representation (termed parameterization) of
subgrid-scale processes such as convection and turbulence, each of which is typified by its own class of
clouds with their own peculiar radiative impacts. Hence it is critical to understand how the properties
of clouds (particularly low-lying equatorial clouds) will vary in response to warming so as to narrow
down the uncertainty in the ECS. See Figure 1, below. [2]

Figure 1: ECS vs global-warming tropical low cloud reflection feedback in climate models. [6]

The effect of these aforementioned subgrid-scale processes is introduced into General Circulation
Models (hereafter, GCMs) using several parameterization schemes, thus introducing an artificial dis-
continuity into the continuous physics of turbulence and convection. The Eddy-Diffusivity Mass-Flux
(EDMF) parameterization scheme (Siebesma et al., 2007) aims to unify these parameterizations (i.e.
solve for both turbulence and convection in one model) by decomposing the grid box of the climate
model into two area fractions, one that includes coherent updrafts and one which contains a turbulent
environment (represented by a mean and variance). The time-dependent extended-EDMF scheme pre-
sented by Tan et al. (2018) might even unify boundary layer turbulence, shallow and deep convection.
[5] However, any such parameterization scheme is still subjected to unknown parameters such as en-
trainment/detrainment rates, the optimal number of convective cells per domain size (the resolution of
the GCM) etc. [4]

Recently, Tan et al. (2018) presented an extended (time dependent) EDMF parameterization which
unifies boundary layer turbulence, shallow convection and deep convection. [5] This parameterization,
which combines turbulence parameterization (as an Eddy-Diffusivity (ED)) and convective parame-
terization (as a Mass-Flux (MF)), and was tested with the assumption of a bulk plume. While this
parameterization can be tested with multiple plumes, the optimal number of plumes is not yet known
and may vary with different convective cases. [1]

At it’s core, the EDMF is a statistical model trying to describe the probability distributions of
turbulence and convection within a grid box. Such distribution from LES data is shown in Figure 2,
below. It is clear that due to the bimodal nature of this distribution it is not possible to capture the
distribution using only Mean: µ, Variance: σ2, and Skewness: ζ, constructed from the LES data.
This illustrates the need for an EDMF scheme which, through updrafts and environment, captures two
different physical regimes which correspond to the different modes of the underlying distribution.
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Figure 2: Comparison, RICO: LES data (histogram), LES skewed Gaussian and Updraft/Environment
gaussians at 16200s, 680m.

The equation for the variance of of a scalar field φ in the EDMF decomposition into updraft and
environment is given by the Reynolds-averaged equation:

φ′φ′ = aφ′φ′
u
+ (1− a)φ′φ′e + a(1− a)(φu − φe)2 (1)

Where φ′φ′ represents the - currently unresolved - variance of the scalar field φ within the grid box
of a GCM, aφ′φ′

u
represents the variance of the updraft part of the distribution, (1−a)φ′φ′e represents

the variance of the environmental part of the distribution and a(1− a)(φu − φe)2 is a term which cap-
tures the added variance due to the relative separation of the means of these two updraft/environment
distributions.

Currently, for reasons of mathematical simplicity and computational performance, the EDMF scheme
neglects the updraft variance (the first term on the right-hand side of (1)), and as a result the updraft
distribution is now represented solely by a mean value within the EDMF scheme. This is known as the
EDMF assumption.

Figure 3: Schematic of the effect of neglecting updraft variance in eqn.(1).

1.1 Research goals

The aim of this work is to use multiple updrafts - each modeled as Gaussians with a standard devi-
ation σ chosen so as not to break the EDMF assumption, described above - to recreate the distribution
of updraft activity diagnosed from high-resolution LES simulations for a range of convective cases and
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domain sizes.

It is also worth noting that the updrafts in any EDMF parameterization are statistical representa-
tions of the observed (i.e. LES modeled) cloud activity, and that the inclusion of multiple updrafts in
the scheme can be regarded as the addition of second order moments (variance) to the EDMF updraft
activity as a whole.

2 Approach and Methods

2.1 Generating initial distribution of updraft activity from LES

In order to determine the number of updrafts required to recreate the distribution of updraft activity
diagnosed from LES, we first fitted a skewed normal distribution to the updraft data from LES. To do
this we edited the PyCLES code so as to generate 3rd-order moments of the variables we were plotting.
For example, θ′θ′θ′

u
(Liquid water potential temperature) and b′b′b′

u
(buoyancy). As a result of these

additions, we were then able to calculate Mean: µ, Variance: σ2, and Skewness: ζ.

The expressions used to calculate skewness and variance from the PyCLES data are:

ζ = φ′φ′φ′/φ′φ′
3/2

(2)

σ2 = φ′φ′ (3)

where
φ′φ′ = (φ− φ)2 = φφ− φ2 (4)

and
φ′φ′φ′ = (φ− φ)3 = φφφ− 3φφφ+ 2φ

3
(5)

Using these values, we were able to generate a skewed normal distribution representing the PDF of
updraft activity in the LES which, although imperfect, is accurate enough for use in the the context of
the EDMF parameterization scheme.

2.2 Kernel Density Estimation

After generating the initial updraft PDF from LES data, we then fit N Gaussian updrafts to this
distribution using a standard statistical tool known as Kernel Density Estimation (KDE). Throughout
this work, we make use of the KDE tools in the Python package SciKit-learn.

To perform Kernel Density Estimation one must specify three input parameters:

1. The kernel to be used. i.e. the non-negative function which will be used N times in order to fit
the distribution; in this work we use Gaussian kernels.

2. The standard deviation of each of these individual kernels, also known as their bandwidth (BW ).

3. Sample data to fit the Kernel Density model to. In our work, this step is where we prescribe the
positioning of the kernels along the x-axis.

In order to make the results of our analysis relevant for the EDMF parameterization - as currently
our tool does not actually utilize the EDMF scheme directly due to the number of free parameters it
is subjected to - it is necessary for us to tailor the BW and position of the updraft Gaussians so as to
capture the underlying physics represented in the EDMF.
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2.2.1 Bandwidth of Gaussian Kernels: Upper Bound

To physically constrain the BW upper bound of the Gaussian kernels, consider the equation for the
variance of of a scalar field φ in the EDMF decomposition into updraft and environment, given by:

φ′φ′ = aφ′φ′
u
+ (1− a)φ′φ′e + a(1− a)(φu − φe)2 (6)

However, as noted above, the EDMF parameterization neglects the first term on the RHS, so for
this to hold we require that:

φ′φ′
u
=

N∑
k=1

φ′φ′k = N φ′φ′individual �
(1− a)φ′φ′e + a(1− a)(φu − φe)2

a
(7)

Or, rather:

φ′φ′individual ≤ χ
(1− a)φ′φ′e + a(1− a)(φu − φe)2

Na
for χ� 1 (8)

Where χ is a small parameter reflecting the partitioning of the total variance between updraft,
environment and mass-flux contributions, thus making it negligible. Also, in the lack of any knowledge
about the contribution of each individual updraft, we assume they each contribute equally to the vari-
ance of updraft activity, so

∑N
k=1 φ

′φ′k = N φ′φ′individual.

Eqn.(7) acts as an upper bound for the variance of a single updraft out of the N updrafts such that
the EDMF assumption that we can neglect the aφ′φ′ term in eqn. (5) will hold. Hence, as

BW =
√
φ′φ′individual, and by taking eqn.(7) at equality, we have an upper bound on the BW for a

given N and χ.

BW ≤

√
χ

a

(1− a)φ′φ′e + a(1− a)(φu − φe)2
N

(9)

Regarding the size of the "normalisation factor", χ, we also reasoned that as the EDMF scheme
resolves contributions of O(a), where a is the area fraction of the updrafts, for a contribution to the
RHS of eqn.(5) to be neglected, it must be of O(a2) and hence χ !∼ a.

Similarly, one could argue that for a φ′φ′
u
to be neglected compared to the other variance terms,

φ′φ′
u
itself has to be at a similar order of magnitude as the other terms on the RHS of eqn.(5), or at

least not 1
a times larger than these terms :

a φ′φ′
u

(1− a)φ′φ′e + a(1− a)(φu − φe)2
∼ a (10)

Comparing with eqn.(7):

−→ χ
!∼ a (11)

2.2.2 Bandwidth of Gaussian Kernels: Lower bound

Similarly a physical constraint on the lower bound on bandwidth is determined by arguing that the
variance of updraft activity must be greater than the variance in the environment.

To see this, consider eqn.(8) at equality and take (1 − a) ≈ 1, which is true for a � 1, it is clear
that the mass flux contribution to the RHS of the numerator is always positive and hence the minimum
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value of the total updraft variance is given by:

φ′φ′
u ≥ φ′φ′

e

a
(12)

and hence:

BW ≥

√
χ

a

φ′φ′
e

N
(13)

Finally, we can say that for χ ∼ a:√
φ′φ′

e

N
≤ BW ≤

√
(1− a)φ′φ′e + a(1− a)(φu − φe)2

N
(14)

Giving us a relatively tight bound on BW as a function of N . In fact, one can show analytically
that if the difference of the means (squared) is sufficiently close to the environmental variance, then the
upper and lower bounds on BW will be very close, neglecting terms of O(a2). In all of the cases and
domains we tested, this condition was satisfied, and so we took the BW of the Gaussians as prescribed
by eqn.(9) with χ ∼ a.

2.2.3 Position of Gaussian Kernels

The position of the Gaussian kernels along the x-axis forms the sample space which is given as an
input to the KDE package in Python, and so we have two conditions which must be met by this sample:

1. The position of the kernels must be sampled from the skewed normal distribution of (2.1) in a
way which retains the Normal/Skewed Normal nature of that distribution.

2. The sampling from this distribution must also in some way be physically constrained using the
assumptions in the EDMF scheme.

In light of these conditions, we chose to sub-sample the distribution of (2.1) based upon "equal-
areas partitioning".

That is, we used the percent point function (PPF) of the updraft distribution in (2.1) to separate
theN points equally in area under the distribution. The percent point function is the inverse of the CDF.

For example, to sub-sample 3 points from the updraft PDF, we would find the x-values at which
the PPF of the updraft distribution equaled 0.25, 0.50 and 0.75. In general, to pick N points from
the distribution, we would find the x-values at which the PPF of the updraft distribution was equal to

1
N+1 ,

2
N+1 , ..., ...,

N
N+1 . See an example in Figure 4, below.

2.3 Error Calculation

To calculate the error between the ground truth of (2.1) and the generated KDE distribution for each
point in (BW,N) space, we used the Kolmolgorov-Smirnov test, which assesses whether two underlying
one-dimensional probability distributions differ by evaluating the point-by-point difference in their CDFs.

3 Results
Below we see an error contour from Rico, overlayed with the prescribed bandwidth curve. Following

the error contour along this bandwidth curve we are able to draw a 1 dimensional Error[N] curve which
has a clear minimum corresponding to Noptimal for this particular domain size and convective regime.
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Figure 4: Positioning of the N updrafts for N = 3 and "equal areas" partitioning.

Figure 5: (Left) Error contour as a function of Bandwidth and N , with the prescribed bandwidth
overlayed for various χ. (Right), 1d error plot along the χ = Area−Fraction upper bound BW curve.

3.1 Effect of domain size

The figures below illustrate how the mean updraft profiles of various LES quantities do not vary with
domain size, whereas on the other hand the variance of these quantities does increase with domain size.
Intriguingly, the ratios between the peak heights of the variances of these quantities seems to match
(roughly) the ratio between the number of updrafts required in each situation, though more work needs
to be done in order to further elucidate this link.

3.2 Effect of different convective cases

We performed our analysis on the output data from LES simulations of BOMEX and RICO, and
while the value of Noptimal changed slightly between these two cases, testing only two cases means it
is difficult to deduce if these variations actually represent a correlation or just ’noise’. Regardless, it
is clear that the effect of domain size is much more important in the RICO/BOMEX comparison of
Noptimal than the convective regime itself, according to our analysis.

4 Conclusions
In this work we began by recognizing the urgent need for better parameterizations of clouds and

turbulence within climate models, and noted that the innately bi-modal nature of the underlying LES
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Figure 6: Variance of liquid water potential temperature (θl) in the updrafts for Rico (left) and Bomex
(right) for different domain sizes as a function of height.

Figure 7: Mean profiles of updraft fraction (left) and liquid water potential temperature (θl, right) for
different domain sizes as a function of height, BOMEX.

Convective case Domain size Noptimal

Rico Half 5
Rico Norm 7
Rico Double 9

Bomex Half 3
Bomex Norm 7
Bomex Double 9

Figure 8: Table 1: Noptimal for various convective cases and domain sizes.

updraft distribution (representing two separate, but coupled, physical regimes; namely turbulent dif-
fusion and convective upwelling) lends itself to a parameterization such as the EDMF scheme. The
inadequacies of the EDMF scheme as it stands today were also discussed.

We have derived a statistical tool which takes the output from a high resolution LES simulation
and gives an estimate of how many updrafts are required within the current EDMF scheme in order to
allow it to recreate the variance diagnosed from the LES simulations. By minimizing the Kolmolgorov-
Smirnov error between the constructed updraft distribution and the one taken from the high resolution
LES simulations we were able to find that for all convective regimes and domain sizes tested there exists
an Noptimal which minimizes this error.

This error was found to vary weakly with convective cases but strongly with the domain size of the
test case, but further convective regimes and domain sizes need to be checked in order to further eluci-
date these dependencies. It would also be prudent to investigate how the optimal number of updrafts
varies with properties at the surface such as surface fluxes, shears etc, so as to form a more complete
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picture of how Noptimal varies physically. Finally, it is necessary to try and embed this statistical tool
within an EDMF scheme to see what effect a varying number of updrafts has on radiative quantities
such as the liquid water path and the cloud fraction.

A Reynolds decomposition of the updraft variance
In (7), we decomposed the variance of updraft activity as:

φ′φ′
u
=

N∑
k=1

φ′φ′k = N φ′φ′individual

However, in doing so we ignored the contribution to the variance which arises due to the distinct
means of the individual updrafts, which we prescribe through the "equal-areas" partitioning as explained
in 2.2.3. Here we apply a Reynolds decomposition to the updraft sub-domain in order to represent it’s
variance in terms of the variance of the individual updrafts and also the differences between their mean
values.

For a general variable φ in the updraft, we can write both φ and φφ in terms of the N contributions
from the individual updrafts.

φ =

N∑
i=1

Aiφi (15)

φφ =

N∑
i=1

Aiφφi (16)

Where φi and φφi are the means and variances of the individual updrafts within the updraft sub-
domain and where Ai is the statistical weight we assign to each individual updraft sub-sub-domain, it
plays an analogous role to the area fraction a which we have in our typical updraft/environment EDMF
decomposition..

Writing the total variance of the updraft sub-domains as φ′φ′ = φφ− φ2, we can (15) and (16) to
write the total updraft variance φ′φ′ as:

φ′φ′ = φφ− φ2 (17)

φ′φ′ =

N∑
i=1

Aiφφi − (

N∑
i=1

Aiφi)(

N∑
j=1

Ajφj) (18)

φ′φ′ =

N∑
i=1

Aiφφi −
N∑
i=1

{(Aiφi)
2 +

∑
0<j≤N

i 6=j

′
(AiAjφiφj)} (19)

Where the
∑ ′

simply denotes a conditional summation.

Noting that φφi = φ′φ′iφ
2

i , and grouping terms, we arrive at:

φ′φ′
u
=

N∑
i=1

(Aiφ′φ′i +Ai(1−Ai)φ
2

i −
∑

0<j≤N
i6=j

′
(AiAjφiφj)) (20)

Now, inserting this new expression for the updraft variance into (7), and requiring that Ai =
1
N ∀i,

as the Ais must sum to unity and additional scaling arguments show that Ai ∼ O( 1
N ), we arrive at the

new upper bound on bandwidth (assuming the bandwidth of each individual bandwidth is the same):
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BW ≤

√√√√√χ

a
(1− a)φ′φ′e + a(1− a)(φu − φe)2 −

N∑
i=1

[ 1

N2
((N − 1)φ

2

i −
∑

0<j≤N
i 6=j

′(φiφj)
]

(21)

Again, as before a similar form can be found for the lower bound, but these are essentially equal,
and so (21) can be taken as the prescribed bandwidth along which the error is calculated.

When this new scheme is implemented however, the Kolmolgorov-Smirnov error is found to be
roughly constant as a function of N (changing only by 10−3 between N = 0 and N = 20) suggesting
that when this new bandwidth formula follows a contour of constant error in the error map.
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