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Text S1: Re-writing the zero-buoyancy plume model into pressure coordinates

The zero-buoyancy plume (ZBP) model of Singh and O’Gorman (2013) predicts, above cloud

base, that the dependence of saturation moist static energy (MSE) on height is given by:

dh∗

dz
= −ϵLv[q

∗(z)− q(z)] = − ϵ̂

z
Lv[q

∗(z)− q(z)], (1)

where z is height, Lv is the latent heat of vaporization, and ϵ is the entrainment rate with an

assumed form of ϵ = ϵ̂/z (Holloway & Neelin, 2009), where ϵ̂ is the entrainment parameter.

The difference between the saturation specific humidity, q∗, and the specific humidity, q, is the

saturation deficit.

We now transform (1) into pressure coordinates so that it can be readily applied to the pressure-

level data from the simulations described in the main text. Assuming hydrostatic balance and

using the ideal gas law p = ρRaTv, where Tv is virtual temperature and Ra is the specific gas

constant for dry air, we can write the vertical pressure gradient as:

dp

dz
=

−gp

RaTv(p)
. (2)

Integrating (2) from the surface to a pressure p yields:

z(p) = −(Ra/g) ln(p/p0){Tv(p)}, (3)

where {Tv(p)} ≡
∫ p
p0
(Tv/p)dp/

∫ p
p0
(1/p)dp is a virtual temperature inversely weighted by pressure

between the surface and a given pressure level. Using (2) and (3), we can re-write (1) in pressure

coordinates to obtain equation (1) from the main text:
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dh∗

dp
= − ϵ̂

p ln(p/p0)

Tv(p)

{Tv(p)}
Lv[q

∗(p)− q(p)]. (4)

Text S2: Estimation of the entrainment parameter

To estimate the entrainment parameter, ϵ̂, we use an optimization routine to minimize the

differences between αe
est and the simulated ascent fraction α across all months in the control

simulation.

By design through the optimization our entrainment-adjusted estimate of ascent fraction αe
est

= α = 0.48. This can be visualised in Figure 2a: the optimization routine finds the value of ϵ̂

which produces an αe
est over the 12 months to adjust the horizontal blue line such it lies on the

red line: this gives the purple horizontal line. This returns a value of ϵ̂ = 0.18. Our optimized ϵ̂

is smaller than the value of 0.75 calculated by Singh and O’Gorman (2013), though differences

are perhaps unsurprising given their study used a limited-domain, cloud-resolving model versus

the GCM simulations with parameterized convection analyzed here.

Text S3: Testing the WTG-approximation in the instability index

We test the consistency of our results with the WTG approximation in our framework by defining

an estimate of saturation MSE in the perturbation simulations: h∗p
500,est ≡ h∗c

500 + ∆h∗
500, where p

and c refer to perturbation and control simulations, respectively, and ∆h∗
500 is the tropical-mean

change in saturation MSE at 500hPa. Note that the specific assumption invoked here is not that

free-tropospheric saturation MSE is spatially uniform across the tropics, rather that changes in

saturation MSE are spatially uniform (a prediction consistent with the WTG approximation).

We then use h∗p
500,est to calculate our entrainment-adjusted instability index, Φe, and find that
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this ‘WTG-test’ estimated ascent fraction is very similar to the αe
est as described in Section 3.2

(Fig. S3).
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Figure S1. Probability density functions (PDFs) in the control simulation of 500 hPa vertical

velocity above the SST warming patches centered at: (a) 100◦E; (b) 140◦E; (c) 180◦E; and (d)

220 ◦E. Extent of the patch is defined as gridpoints with an SST change of greater than +0.4 K

in the +4 K warming simulation.
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Figure S2. As for Figure 1 in the main text, but here including results for ascent fraction

calculated with vertical velocity at 500 hPa (peach lines) and the entrainment-adjusted instability

index (light blue lines) excluding directly warmed grid points (as defined as gridpoints with an

SST change of greater than +0.4 K in the +4 K warming simulation).
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Figure S3. As for Figure 1 in the main text, but here including: the ascent fraction as

estimated by instability index unadjusted for entrainment (blue lines); results testing the WTG

assumption (green lines, see Text S3 for details); and results testing the effects of using [h∗e] from

the control simulation rather than from the perturbation simulation (orange lines, see Section

3.2).
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Figure S4. Entrainment-adjustment term ϵ̂h∗e for: (a) -2 K perturbation centered at 180◦E;

(b) -2 K at 220◦E; (c) +2 K at 180◦E; and (d) +2 K at 220◦E. Also included are zero contours

for the unadjusted instability index Φ (dotted white) and entrainment-adjusted instability index

Φe (dashed white) and 500 hPa vertical velocity (solid dark blue).
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Figure S5. As for Figure 3 in the main text, but here for the -2K simulations.
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Figure S6. As for Figure 3e-h in the main text, but here showing the change in net cloud

radiative effect for: (a)-(d) gridpoints which are directly warmed at the surface (i.e., fall within

the SST warming patch); and (e)-(h) those which are not (i.e., fall outwith the patch). Extent

of the patch is defined as gridpoints with an SST change of greater than +0.4 K in the +4 K

warming simulation.
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Figure S7. As for Figure 3e-h in the main text, but here showing ∆h∗
500 conditioned on the

instability indices. (a) and (b): ∆h∗
500 binned by control (x-axis) and perturbation instability

indices (y-axis). (c) and (d): Integrated contributions of the four quadrants (colors) to tropical-

mean ∆h∗
500 (black line).
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Figure S8. Changes in cloud fraction (bottom x-axes, solid lines) and mass fraction of cloud

liquid water and ice (top x-axes, dashed and dotted lines, respectively) averaged over different

regimes between the control and +2K simulations for the 180◦E (orange) and 220◦E (blue)

patches. Regimes are: (a) subsidence regime where the ∆CREnet < 0; (b) convective regime

which are directly warmed (i.e. within the patch, as defined by gridpoints with an SST change

of greater than +0.4 K in the +4 K warming simulation); (c) convective regime which are not

directly warmed (outwith the patch); and (d) convective margins. Note that (a) is a subset of

the subsidence regime and (b) and (c) are subsets of the convective regime as defined in the main

text.
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Figure S9. As for Figure 3e-h, but here showing changes in: (a)-(d) longwave CRE; and

(e)-(g) shortwave CRE.
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